City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  3. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A vertex may exist in a graph and not belong to an edge. Under this definition, multiple edges, in which two or more edges connect the same vertices, are not allowed. In one more general sense of the term allowing multiple edges, [3] [4] a graph is an ordered triple = (,,) comprising:

  4. Neighbourhood (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

    Neighbourhood (graph theory) In this graph, the vertices adjacent to 5 are 1, 2 and 4. The neighbourhood of 5 is the graph consisting of the vertices 1, 2, 4 and the edge connecting 1 and 2. In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge. The neighbourhood of a vertex v in a graph G is ...

  5. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  6. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    The edge-connectivity for a graph with at least 2 vertices is less than or equal to the minimum degree of the graph because removing all the edges that are incident to a vertex of minimum degree will disconnect that vertex from the rest of the graph. [1] For a vertex-transitive graph of degree d, we have: 2(d + 1)/3 ≤ κ(G) ≤ λ(G) = d. [11]

  7. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig ( 1931 ), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs .

  8. Menger's theorem - Wikipedia

    en.wikipedia.org/wiki/Menger's_theorem

    The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.

  9. Deficiency (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Deficiency_(graph_theory)

    Lem.1.3.5 For a bipartite graph G with def(G;X) = 0, the number sur(G;X) is the largest integer s satisfying the following property for every vertex x in X: if we add s new vertices to X and connect them to the vertices in N G (x), the resulting graph has a non-negative surplus.: Thm.1.3.6