City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematics of Sudoku - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_Sudoku

    A Sudoku whose regions are not (necessarily) square or rectangular is known as a Jigsaw Sudoku. In particular, an N × N square where N is prime can only be tiled with irregular N -ominoes . For small values of N the number of ways to tile the square (excluding symmetries) has been computed (sequence A172477 in the OEIS ). [ 10 ]

  3. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).

  4. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Sudoku solving algorithms. A typical Sudoku puzzle. A standard Sudoku contains 81 cells, in a 9×9 grid, and has 9 boxes, each box being the intersection of the first, middle, or last 3 rows, and the first, middle, or last 3 columns. Each cell may contain a number from one to nine, and each number can only occur once in each row, column, and box.

  5. Reed–Muller code - Wikipedia

    en.wikipedia.org/wiki/Reed–Muller_code

    Traditional Reed–Muller codes are binary codes, which means that messages and codewords are binary strings. When r and m are integers with 0 ≤ r ≤ m, the Reed–Muller code with parameters r and m is denoted as RM ( r , m ). When asked to encode a message consisting of k bits, where holds, the RM ( r , m) code produces a codeword ...

  6. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  7. Hadamard code - Wikipedia

    en.wikipedia.org/wiki/Hadamard_code

    The Hadamard code is a linear code, and all linear codes can be generated by a generator matrix . This is a matrix such that Had ( x ) = x ⋅ G {\displaystyle {\text{Had}}(x)=x\cdot G} holds for all x ∈ { 0 , 1 } k {\displaystyle x\in \{0,1\}^{k}} , where the message x {\displaystyle x} is viewed as a row vector and the vector-matrix product ...

  8. Singleton bound - Wikipedia

    en.wikipedia.org/wiki/Singleton_bound

    In the linear code case a different proof of the Singleton bound can be obtained by observing that rank of the parity check matrix is . [4] Another simple proof follows from observing that the rows of any generator matrix in standard form have weight at most n − k + 1 {\displaystyle n-k+1} .

  9. Play Sudoku Online for Free - AOL.com

    www.aol.com/games/play/masque-publishing/sudoku

    Sudoku. Completely fill the 9x9 grid, using the values 1 through 9 only once in each 3x3 section of the puzzle. By Masque Publishing. Advertisement. Advertisement. Feedback. Help. Join AOL ...