City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).

  3. Reed–Muller code - Wikipedia

    en.wikipedia.org/wiki/Reed–Muller_code

    The generator matrix. The Reed–Muller RM(r, m) code of order r and length N = 2 m is the code generated by v 0 and the wedge products of up to r of the v i, 1 ≤ i ≤ m (where by convention a wedge product of fewer than one vector is the identity for the

  4. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations.

  5. Hamming(7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    Hamming (7,4) In coding theory, Hamming (7,4) is a linear error-correcting code that encodes four bits of data into seven bits by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code often refers to this specific code that Richard W. Hamming introduced in 1950.

  6. Dual code - Wikipedia

    en.wikipedia.org/wiki/Dual_code

    In linear algebra terms, the dual code is the annihilator of C with respect to the bilinear form . The dimension of C and its dual always add up to the length n : A generator matrix for the dual code is the parity-check matrix for the original code and vice versa. The dual of the dual code is always the original code.

  7. Singleton bound - Wikipedia

    en.wikipedia.org/wiki/Singleton_bound

    Singleton bound. In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code with block length , size and minimum distance . It is also known as the Joshibound. [1] proved by Joshi (1958) and even earlier by Komamiya (1953) .

  8. Concatenated error correction code - Wikipedia

    en.wikipedia.org/wiki/Concatenated_error...

    Schematic depiction of a concatenated code built upon an inner code and an outer code. This is a pictorial representation of a code concatenation, and, in particular, the Reed–Solomon code with n=q=4 and k=2 is used as the outer code and the Hadamard code with n=q and k=log q is used as the inner code. Overall, the concatenated code is a -code.

  9. Binary Golay code - Wikipedia

    en.wikipedia.org/wiki/Binary_Golay_code

    A generator matrix for the binary Golay code is I A, where I is the 12×12 identity matrix, and A is the complement of the adjacency matrix of the icosahedron. A convenient representation. It is convenient to use the "Miracle Octad Generator" format, with co-ordinates in an array of 4 rows, 6 columns. Addition is taking the symmetric difference.