City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reed–Muller code - Wikipedia

    en.wikipedia.org/wiki/Reed–Muller_code

    The generator matrix. The Reed–Muller RM(r, m) code of order r and length N = 2 m is the code generated by v 0 and the wedge products of up to r of the v i, 1 ≤ i ≤ m (where by convention a wedge product of fewer than one vector is the identity for the

  3. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).

  4. Concatenated error correction code - Wikipedia

    en.wikipedia.org/wiki/Concatenated_error...

    Schematic depiction of a concatenated code built upon an inner code and an outer code. This is a pictorial representation of a code concatenation, and, in particular, the Reed–Solomon code with n=q=4 and k=2 is used as the outer code and the Hadamard code with n=q and k=log q is used as the inner code. Overall, the concatenated code is a -code.

  5. Reed–Solomon error correction - Wikipedia

    en.wikipedia.org/wiki/Reed–Solomon_error...

    The first element of a CIRC decoder is a relatively weak inner (32,28) Reed–Solomon code, shortened from a (255,251) code with 8-bit symbols. This code can correct up to 2 byte errors per 32-byte block. More importantly, it flags as erasures any uncorrectable blocks, i.e., blocks with more than 2 byte errors.

  6. Singleton bound - Wikipedia

    en.wikipedia.org/wiki/Singleton_bound

    Singleton bound. In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code with block length , size and minimum distance . It is also known as the Joshibound. [1] proved by Joshi (1958) and even earlier by Komamiya (1953) .

  7. Hamming(7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    Hamming (7,4) In coding theory, Hamming (7,4) is a linear error-correcting code that encodes four bits of data into seven bits by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code often refers to this specific code that Richard W. Hamming introduced in 1950.

  8. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    LDPC codes have no limitations of minimum distance, that indirectly means that LDPC codes may be more efficient on relatively large code rates (e.g. 3/4, 5/6, 7/8) than turbo codes. However, LDPC codes are not the complete replacement: turbo codes are the best solution at the lower code rates (e.g. 1/6, 1/3, 1/2). See also People

  9. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    Convolutional code with any code rate can be designed based on polynomial selection; however, in practice, a puncturing procedure is often used to achieve the required code rate. Puncturing is a technique used to make a m/n rate code from a "basic" low-rate (e.g., 1/n) code. It is achieved by deleting of some bits in the encoder output.