City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn ), or 1 km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a ...

  3. Sound power - Wikipedia

    en.wikipedia.org/wiki/Sound_power

    TL. v. t. e. Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over ...

  4. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    Wave equation. The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  5. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    If relativistic effects are important, the speed of sound is calculated from the relativistic Euler equations. In fresh water the speed of sound is approximately 1,482 m/s (5,335 km/h; 3,315 mph). In steel, the speed of sound is about 5,960 m/s (21,460 km/h; 13,330 mph).

  6. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    In practice N is set to 1 cycle and t = T = time period for 1 cycle, ... V = speed of sound wave in medium; ... SI electromagnetism units; Wave equation; One-way wave ...

  7. Fundamental frequency - Wikipedia

    en.wikipedia.org/wiki/Fundamental_frequency

    where is the speed of the wave, the fundamental frequency can be found in terms of the speed of the wave and the length of the pipe: f 0 = v 4 L {\displaystyle f_{0}={\frac {v}{4L}}} If the ends of the same pipe are now both closed or both opened, the wavelength of the fundamental harmonic becomes 2 L {\displaystyle 2L} .

  8. Sound intensity - Wikipedia

    en.wikipedia.org/wiki/Sound_intensity

    Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area. The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m 2 ). One application is the noise measurement of sound intensity in the air at a listener's ...

  9. Phase velocity - Wikipedia

    en.wikipedia.org/wiki/Phase_velocity

    This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave (for example, the crest) will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and time period T as. Equivalently, in terms of the wave's angular ...