City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    In mathematical terms, Hamming codes are a class of binary linear code. For each integer r ≥ 2 there is a code-word with block length n = 2r − 1 and message length k = 2r − r − 1. Hence the rate of Hamming codes is R = k / n = 1 − r / (2r − 1), which is the highest possible for codes with minimum distance of three (i.e., the minimal ...

  3. Hamming(7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    Hamming (7,4) In coding theory, Hamming (7,4) is a linear error-correcting code that encodes four bits of data into seven bits by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code often refers to this specific code that Richard W. Hamming introduced in 1950.

  4. Reed–Muller code - Wikipedia

    en.wikipedia.org/wiki/Reed–Muller_code

    Traditional Reed–Muller codes are binary codes, which means that messages and codewords are binary strings. When r and m are integers with 0 ≤ r ≤ m, the Reed–Muller code with parameters r and m is denoted as RM ( r , m ). When asked to encode a message consisting of k bits, where holds, the RM ( r , m) code produces a codeword ...

  5. Reed–Solomon error correction - Wikipedia

    en.wikipedia.org/wiki/Reed–Solomon_error...

    The Reed–Solomon code is actually a family of codes, where every code is characterised by three parameters: an alphabet size , a block length, and a message length, with <. The set of alphabet symbols is interpreted as the finite field F {\displaystyle F} of order q {\displaystyle q} , and thus, q {\displaystyle q} must be a prime power .

  6. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).

  7. Gilbert–Varshamov bound for linear codes - Wikipedia

    en.wikipedia.org/wiki/Gilbert–Varshamov_bound...

    The Gilbert–Varshamov bound for linear codes is related to the general Gilbert–Varshamov bound, which gives a lower bound on the maximal number of elements in an error-correcting code of a given block length and minimum Hamming weight over a field . This may be translated into a statement about the maximum rate of a code with given length ...

  8. Coding theory - Wikipedia

    en.wikipedia.org/wiki/Coding_theory

    Linear block codes have the property of linearity, i.e. the sum of any two codewords is also a code word, and they are applied to the source bits in blocks, hence the name linear block codes. There are block codes that are not linear, but it is difficult to prove that a code is a good one without this property.

  9. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    Codes with minimum Hamming distance d = 2 are degenerate cases of error-correcting codes and can be used to detect single errors. The parity bit is an example of a single-error-detecting code. The parity bit is an example of a single-error-detecting code.