City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/ x or x1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a / b is b / a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one ...

  3. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    t. e. In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by. For a function , its inverse admits an explicit description: it sends each element to the unique element such that f(x) = y .

  4. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    Binomial approximation. The binomial approximation is useful for approximately calculating powers of sums of 1 and a small number x. It states that. It is valid when and where and may be real or complex numbers . The benefit of this approximation is that is converted from an exponent to a multiplicative factor.

  5. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of is denoted as , where if and only if , then the inverse function rule is, in Lagrange's notation , .

  6. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    The inverse function theorem can also be generalized to differentiable maps between Banach spaces X and Y. [20] Let U be an open neighbourhood of the origin in X and F : U → Y {\displaystyle F:U\to Y\!} a continuously differentiable function, and assume that the Fréchet derivative d F 0 : XY {\displaystyle dF_{0}:X\to Y\!} of F at 0 is ...

  7. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    Fermat's little theorem. In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number ap − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as. For example, if a = 2 and p = 7, then 27 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7 .

  8. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...

  9. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    The multiplicative inverse x ≡ a −1 (mod m) may be efficiently computed by solving Bézout's equation a x + m y = 1 for x, y, by using the Extended Euclidean algorithm. In particular, if p is a prime number, then a is coprime with p for every a such that 0 < a < p ; thus a multiplicative inverse exists for all a that is not congruent to ...