City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    This is a consequence of the fact that a parity check matrix of is a generator matrix of the dual code. G is a matrix, while H is a () matrix. Equivalent codes. Codes C 1 and C 2 are equivalent (denoted C 1 ~ C 2) if one code can be obtained from the other via the following two transformations: arbitrarily permute the components, and

  3. Reed–Muller code - Wikipedia

    en.wikipedia.org/wiki/Reed–Muller_code

    The generator matrix. The Reed–Muller RM(r, m) code of order r and length N = 2 m is the code generated by v 0 and the wedge products of up to r of the v i, 1 ≤ i ≤ m (where by convention a wedge product of fewer than one vector is the identity for the

  4. Linear code - Wikipedia

    en.wikipedia.org/wiki/Linear_code

    Linear code. In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. [1] Linear codes allow for more efficient encoding and ...

  5. Dual code - Wikipedia

    en.wikipedia.org/wiki/Dual_code

    In linear algebra terms, the dual code is the annihilator of C with respect to the bilinear form . The dimension of C and its dual always add up to the length n : A generator matrix for the dual code is the parity-check matrix for the original code and vice versa. The dual of the dual code is always the original code.

  6. Group code - Wikipedia

    en.wikipedia.org/wiki/Group_code

    Group code. In coding theory, group codes are a type of code. Group codes consist of linear block codes which are subgroups of , where is a finite Abelian group . A systematic group code is a code over of order defined by homomorphisms which determine the parity check bits. The remaining bits are the information bits themselves.

  7. Reed–Solomon error correction - Wikipedia

    en.wikipedia.org/wiki/Reed–Solomon_error...

    The first element of a CIRC decoder is a relatively weak inner (32,28) Reed–Solomon code, shortened from a (255,251) code with 8-bit symbols. This code can correct up to 2 byte errors per 32-byte block. More importantly, it flags as erasures any uncorrectable blocks, i.e., blocks with more than 2 byte errors.

  8. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations.

  9. Binary Golay code - Wikipedia

    en.wikipedia.org/wiki/Binary_Golay_code

    A generator matrix for the binary Golay code is I A, where I is the 12×12 identity matrix, and A is the complement of the adjacency matrix of the icosahedron. A convenient representation. It is convenient to use the "Miracle Octad Generator" format, with co-ordinates in an array of 4 rows, 6 columns. Addition is taking the symmetric difference.