City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).

  3. Reed–Muller code - Wikipedia

    en.wikipedia.org/wiki/Reed–Muller_code

    Traditional Reed–Muller codes are binary codes, which means that messages and codewords are binary strings. When r and m are integers with 0 ≤ r ≤ m, the Reed–Muller code with parameters r and m is denoted as RM ( r , m ). When asked to encode a message consisting of k bits, where holds, the RM ( r , m) code produces a codeword ...

  4. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    Convolutional code with any code rate can be designed based on polynomial selection; [15] however, in practice, a puncturing procedure is often used to achieve the required code rate. Puncturing is a technique used to make a m/n rate code from a "basic" low-rate (e.g., 1/n) code. It is achieved by deleting of some bits in the encoder output.

  5. Hamming(7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    Hamming (7,4) In coding theory, Hamming (7,4) is a linear error-correcting code that encodes four bits of data into seven bits by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code often refers to this specific code that Richard W. Hamming introduced in 1950.

  6. Hadamard code - Wikipedia

    en.wikipedia.org/wiki/Hadamard_code

    The Hadamard code is a linear code, and all linear codes can be generated by a generator matrix . This is a matrix such that Had ( x ) = x ⋅ G {\displaystyle {\text{Had}}(x)=x\cdot G} holds for all x ∈ { 0 , 1 } k {\displaystyle x\in \{0,1\}^{k}} , where the message x {\displaystyle x} is viewed as a row vector and the vector-matrix product ...

  7. Reed–Solomon error correction - Wikipedia

    en.wikipedia.org/wiki/Reed–Solomon_error...

    The first element of a CIRC decoder is a relatively weak inner (32,28) Reed–Solomon code, shortened from a (255,251) code with 8-bit symbols. This code can correct up to 2 byte errors per 32-byte block. More importantly, it flags as erasures any uncorrectable blocks, i.e., blocks with more than 2 byte errors.

  8. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    Cyclic redundancy check. A cyclic redundancy check ( CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [ 1][ 2] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.

  9. Singleton bound - Wikipedia

    en.wikipedia.org/wiki/Singleton_bound

    Contents. Singleton bound. In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code with block length , size and minimum distance . It is also known as the Joshibound. 1 proved by Joshi (1958) and even earlier by Komamiya (1953) .