City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    In mathematical terms, Hamming codes are a class of binary linear code. For each integer r ≥ 2 there is a code-word with block length n = 2r − 1 and message length k = 2r − r − 1. Hence the rate of Hamming codes is R = k / n = 1 − r / (2r − 1), which is the highest possible for codes with minimum distance of three (i.e., the minimal ...

  3. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    Hamming code; Latin square based code for non-white noise (prevalent for example in broadband over powerlines) Lexicographic code; Linear Network Coding, a type of erasure correcting code across networks instead of point-to-point links; Long code; Low-density parity-check code, also known as Gallager code, as the archetype for sparse graph codes

  4. Hamming(7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    Hamming (7,4) In coding theory, Hamming (7,4) is a linear error-correcting code that encodes four bits of data into seven bits by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code often refers to this specific code that Richard W. Hamming introduced in 1950.

  5. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    Cyclic redundancy check. A cyclic redundancy check ( CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [1] [2] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.

  6. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    Convolutional codes are processed on a bit-by-bit basis. They are particularly suitable for implementation in hardware, and the Viterbi decoder allows optimal decoding. Block codes are processed on a block-by-block basis. Early examples of block codes are repetition codes, Hamming codes and multidimensional parity-check codes.

  7. Reed–Solomon error correction - Wikipedia

    en.wikipedia.org/wiki/Reed–Solomon_error...

    The first element of a CIRC decoder is a relatively weak inner (32,28) Reed–Solomon code, shortened from a (255,251) code with 8-bit symbols. This code can correct up to 2 byte errors per 32-byte block. More importantly, it flags as erasures any uncorrectable blocks, i.e., blocks with more than 2 byte errors.

  8. Burst error-correcting code - Wikipedia

    en.wikipedia.org/wiki/Burst_error-correcting_code

    Burst error-correcting code. In coding theory, burst error-correcting codes employ methods of correcting burst errors, which are errors that occur in many consecutive bits rather than occurring in bits independently of each other. Many codes have been designed to correct random errors.

  9. Coding theory - Wikipedia

    en.wikipedia.org/wiki/Coding_theory

    The only nontrivial and useful perfect codes are the distance-3 Hamming codes with parameters satisfying (2 r – 1, 2 r – 1 – r, 3), and the [23,12,7] binary and [11,6,5] ternary Golay codes. Another code property is the number of neighbors that a single codeword may have. Again, consider pennies as an example.