City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The dimension of the column space is called the rank of the matrix and is at most min (m, n). [ 1] A definition for matrices over a ring is also possible . The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(AT) and C(A) respectively. [ 2]

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [ 1 ] It was independently described by E. H. Moore in 1920, [ 2 ] Arne Bjerhammar in 1951, [ 3 ] and Roger Penrose in ...

  4. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    In computing, row-major order and column-major order are methods for storing multidimensional arrays in linear storage such as random access memory . The difference between the orders lies in which elements of an array are contiguous in memory. In row-major order, the consecutive elements of a row reside next to each other, whereas the same ...

  5. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    A doubly stochastic matrix is a square matrix of nonnegative real numbers with each row and column summing to 1. In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right stochastic matrix (or column of a left stochastic matrix) is a probability vector.

  6. Subspace identification method - Wikipedia

    en.wikipedia.org/wiki/Subspace_identification_method

    Subspace identification method. In mathematics, specifically in control theory, subspace identification ( SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID ...

  7. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    Kernel (linear algebra) In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. [ 1] That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the ...

  8. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    Outer product. In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors ...

  9. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    C [ i ][ j] = C [ i ][ j] + A [ i ][ k ]* B [ k ][ j ] output C (as A*B) This algorithm requires, in the worst case, ⁠ ⁠ multiplications of scalars and ⁠ ⁠ additions for computing the product of two square n×n matrices. Its computational complexity is therefore ⁠ ⁠, in a model of computation where field operations (addition and ...