City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).

  3. Reed–Muller code - Wikipedia

    en.wikipedia.org/wiki/Reed–Muller_code

    Traditional Reed–Muller codes are binary codes, which means that messages and codewords are binary strings. When r and m are integers with 0 ≤ r ≤ m, the Reed–Muller code with parameters r and m is denoted as RM ( r , m ). When asked to encode a message consisting of k bits, where holds, the RM ( r , m) code produces a codeword ...

  4. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  5. Dual code - Wikipedia

    en.wikipedia.org/wiki/Dual_code

    In coding theory, the dual code of a linear code. is the linear code defined by. where. is a scalar product. In linear algebra terms, the dual code is the annihilator of C with respect to the bilinear form . The dimension of C and its dual always add up to the length n : A generator matrix for the dual code is the parity-check matrix for the ...

  6. Linear code - Wikipedia

    en.wikipedia.org/wiki/Linear_code

    Linear code. In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. [1] Linear codes allow for more efficient encoding and ...

  7. Hadamard code - Wikipedia

    en.wikipedia.org/wiki/Hadamard_code

    The Hadamard code is a linear code, and all linear codes can be generated by a generator matrix . This is a matrix such that Had ( x ) = x ⋅ G {\displaystyle {\text{Had}}(x)=x\cdot G} holds for all x ∈ { 0 , 1 } k {\displaystyle x\in \{0,1\}^{k}} , where the message x {\displaystyle x} is viewed as a row vector and the vector-matrix product ...

  8. Systematic code - Wikipedia

    en.wikipedia.org/wiki/Systematic_code

    Systematic code. In coding theory, a systematic code is any error-correcting code in which the input data are embedded in the encoded output. Conversely, in a non-systematic code the output does not contain the input symbols. Systematic codes have the advantage that the parity data can simply be appended to the source block, and receivers do ...

  9. Singleton bound - Wikipedia

    en.wikipedia.org/wiki/Singleton_bound

    Contents. Singleton bound. In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code with block length , size and minimum distance . It is also known as the Joshibound. 1 proved by Joshi (1958) and even earlier by Komamiya (1953) .