City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    Power of 10. Visualisation of powers of 10 from one to 1 trillion. A power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ten are:

  3. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be ⁠ 1 / 2 ⁠. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = ⁠ 1 / 2 ⁠ + yi where y is a real number.

  4. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    The degree of the sum (or difference) of two polynomials is less than or equal to the greater of their degrees; that is, and . For example, the degree of is 2, and 2 ≤ max {3, 3}. The equality always holds when the degrees of the polynomials are different. For example, the degree of is 3, and 3 = max {3, 2}.

  5. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    If f is meromorphic in U, then a zero of f is a pole of 1/f, and a pole of f is a zero of 1/f. This induces a duality between zeros and poles, that is fundamental for the study of meromorphic functions. For example, if a function is meromorphic on the whole complex plane plus the point at infinity, then the sum of the multiplicities of its ...

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference ...

  7. Googolplex - Wikipedia

    en.wikipedia.org/wiki/Googolplex

    A typical book can be printed with 10 6 zeros (around 400 pages with 50 lines per page and 50 zeros per line). Therefore, it requires 10 94 such books to print all the zeros of a googolplex (that is, printing a googol zeros).

  8. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    n ! {\displaystyle n!} In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product.

  9. Trailing zero - Wikipedia

    en.wikipedia.org/wiki/Trailing_zero

    The number of trailing zeros in a non-zero base-b integer n equals the exponent of the highest power of b that divides n. For example, 14000 has three trailing zeros and is therefore divisible by 1000 = 10 3 , but not by 10 4 .