City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series ...

  3. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2n + 1) : n ∈ , are irrational. [1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ (5), ζ (7), ζ (9), or ζ ...

  4. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Tetration is also defined recursively as. allowing for attempts to extend tetration to non-natural numbers such as real, complex, and ordinal numbers . The two inverses of tetration are called super-root and super-logarithm, analogous to the nth root and the logarithmic functions.

  5. Snellen chart - Wikipedia

    en.wikipedia.org/wiki/Snellen_chart

    Snellen chart. Purpose. Snellen chart is used to estimate visual acuity (last three rows are 20/15, 20/13 and 20/10) A Snellen chart is an eye chart that can be used to measure visual acuity. Snellen charts are named after the Dutch ophthalmologist Herman Snellen who developed the chart in 1862 as a measurement tool for the acuity formula ...

  6. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    Knuth's up-arrow notation. In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [ 1] In his 1947 paper, [ 2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations. Goodstein also suggested the Greek names tetration, pentation ...

  7. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    List of representations of e. List of representations of. e. The mathematical constant e can be represented in a variety of ways as a real number. Since e is an irrational number (see proof that e is irrational ), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction.

  8. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series ⁠ 1 2 ⁠ + ⁠ 1 4 ⁠ + ⁠ 1 8 ⁠ + ⁠ 1 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...

  9. Expression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Expression_(mathematics)

    Expression (mathematics) In mathematics, an expression is a written arrangement of symbols following the context-dependent, syntactic conventions of mathematical notation. Symbols can denote numbers ( constants ), variables, operations, functions. Other symbols include punctuation signs and brackets (often used for grouping, that is for ...