City Pedia Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    Barrett reduction is an algorithm designed to optimize this operation assuming is constant, and <, replacing divisions by multiplications. Historically, for values a , b < n {\displaystyle a,b<n} , one computed a b mod n {\displaystyle ab\,{\bmod {\,}}n\,} by applying Barrett reduction to the full product a b {\displaystyle ab} .

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  4. Strength reduction - Wikipedia

    en.wikipedia.org/wiki/Strength_reduction

    In compiler construction, strength reduction is a compiler optimization where expensive operations are replaced with equivalent but less expensive operations. [1] The classic example of strength reduction converts strong multiplications inside a loop into weaker additions – something that frequently occurs in array addressing.(

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The constants R mod N and R 3 mod N can be generated as REDC(R 2 mod N) and as REDC((R 2 mod N)(R 2 mod N)). The fundamental operation is to compute REDC of a product. When standalone REDC is needed, it can be computed as REDC of a product with 1 mod N. The only place where a direct reduction modulo N is necessary is in the precomputation of R ...

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.

  7. Modular forms modulo p - Wikipedia

    en.wikipedia.org/wiki/Modular_forms_modulo_p

    Modular forms modulo. p. In mathematics, modular forms are particular complex analytic functions on the upper half-plane of interest in complex analysis and number theory. When reduced modulo a prime p, there is an analogous theory to the classical theory of complex modular forms and the p -adic theory of modular forms.

  8. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    9 mod 16 → 9, 25 mod 32 and 7 mod 16 → 7, 23 mod 16, while 1 mod 16 and 15 mod 16 don't lift to roots mod 32. For every k at least 3, there are four roots of x 2 − 17 mod 2 k, but if we look at their 2-adic expansions we can see that in pairs they are converging to just two 2-adic limits. For instance, the four roots mod 32 break up into ...

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    However, the linear congruence 4x ≡ 6 (mod 10) has two solutions, namely, x = 4 and x = 9. The gcd(4, 10) = 2 and 2 does not divide 5, but does divide 6. Since gcd(3, 10) = 1, the linear congruence 3x ≡ 1 (mod 10) will have solutions, that is, modular multiplicative inverses of 3 modulo 10 will exist. In fact, 7 satisfies this congruence (i ...